

# Western Technical College

# 31444301 CNC Production Mill - Operation

# **Course Outcome Summary**

# **Course Information**

| Description            | Operation of CNC (Computer Numerical Control) machining centers includes calling<br>up programs, loading and unloading parts, inspection, and the recognition of tool<br>wear. Procedural processes, inspection of parts, and the use of inspection sheets<br>and guides will be covered. |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Career<br>Cluster      | Manufacturing                                                                                                                                                                                                                                                                             |
| Instructional<br>Level | Technical Diploma Courses                                                                                                                                                                                                                                                                 |
| Total Credits          | 1                                                                                                                                                                                                                                                                                         |
| Total Hours            | 36                                                                                                                                                                                                                                                                                        |

### Textbooks

No textbook required.

### **Learner Supplies**

Safety glasses with side eye protection that meet Z87 OSHA guidelines. **Vendor:** Campus Shop. Required. Proper footwear - \$35.00-75.00. **Vendor:** To be discussed in class. Required. Scientific calculator (recommend T1-36x Solar). **Vendor:** Campus Shop. Required.

# **Success Abilities**

- 1. Apply mathematical concepts.
- 2. Demonstrate ability to think critically.
- 3. Demonstrate ability to value self and work ethically with others in a diverse population.
- 4. Make decisions that incorporate the importance of sustainability.
- 5. Use effective communication skills.
- 6. Use technology effectively.

# **Program Outcomes**

- 1. MACH 1. Apply basic safety practices in the machine shop
- 2. MACH 2. Interpret industrial/engineering drawings

- 3. MACH 3. Apply precision measuring methods to part inspection
- 4. MACH 5. Perform programming, set-up and operation of CNC Machine Tools

### **Course Competencies**

### 1. Identify various types of CNC machining centers.

### **Assessment Strategies**

- 1.1. In the classroom, lab, or shop setting
- 1.2. Written and applied assignments (score 70% or higher)
- 1.3. Exams / Quizzes (score 70% or higher)
- 1.4. Given diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 1.1. you list the common brands of CNC machining centers.
- 1.2. you match brands to control models.
- 1.3. you identify brands and controllers in the shop or lab.
- 1.4. you participate in lab or shop orientation for machining centers.
- 1.5. you participate in lab or shop discussion of CNC machining center features.
- 1.6. you complete MasterTask CNC Mills Module 1 interactive test.

### **Learning Objectives**

- 1.a. Identify CNC machining center brands.
- 1.b. Describe control models within machine brands.
- 1.c. Explain differences in CNC machining center features for various models.
- 1.d. Identify CNC machining center workpiece holding and loading mechanisms.
- 1.e. Identify CNC machining center tool handling and retrieval mechanisms on CNC machining centers.

### 2. Describe the coordinate movements of CNC machining centers.

### **Assessment Strategies**

- 2.1. In the classroom, lab, or shop setting
- 2.2. written and applied assignments (score 70% or higher)
- 2.3. Tests / Quizzes (score 70% or higher)
- 2.4. Given diagrams, models, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 2.1. you complete a diagram showing CNC machining center axis coordinate movements.
- 2.2. you demonstrate relevant axes movements on machine axes model.
- 2.3. you identify PRZ and machine home locations on a part diagram or print.
- 2.4. you demonstrate tool movement relative to coordinate system using models.
- 2.5. you diagram part reference zero and machine home locations.
- 2.6. you complete MasterTask CNC Mills Module 2 interactive test.
- 2.7. you complete MasterTask CNC Mills Module 3 interactive test.
- 2.8. you complete MasterTask CNC Mills Module 4 interactive test.
- 2.9. you complete MasterTask CNC Mills Module 5 interactive test.

- 2.a. Describe safety procedures for CNC machining centers.
- 2.b. Describe basic operating principles of CNC machining centers.
- 2.c. Describe CNC machining center workpiece holding and loading mechanisms.
- 2.d. Describe automatic tool handling and retrieval mechanisms on CNC machining centers.
- 2.e. Describe CNC machining center axis movements relative to the Cartesian coordinate system.
- 2.f. Determine position of signed numbers on a coordinate grid system.
- 2.g. Describe the A, B, and C axes movements of a CNC machining center relative to the coordinate system.
- 2.h. Describe the machine zero or home location on the CNC machining center.
- 2.i. Describe the part zero reference location on the CNC machining center.
- 2.j. Differentiate PRZ and Machine Zero.

- 2.k. Describe a typical application of PRZ relative to machine zero.
- 2.I. Explain tool movement control relative to the coordinate system.
- 2.m. Describe the tool change position relative to Home and PRZ.

### 3. Identify common CNC machining center programming methods.

### **Assessment Strategies**

- 3.1. In the classroom, lab, or shop setting
- 3.2. Written and applied assignments (score 70% or higher)
- 3.3. Test / Quizzes (score 70% or higher)
- 3.4. Given prints, diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 3.1. you identify types of controls on specific CNC milling machines in the machine tool lab or shop.
- 3.2. you describe the differences in programming requirements for specific CNC milling machines in the machine tool lab or shop.
- 3.3. you identify basic EIA/ISO codes on CNC machining center display screen.
- 3.4. you select tools for CNC milling machines for given applications.
- 3.5. you complete MasterTask CNC Mills Module 7 interactive test.

### Learning Objectives

- 3.a. Identify various CNC machining center models of controls.
- 3.b. Identify common languages used in CNC mill programming.
- 3.c. Differentiate conversational controls and EIA controls on CNC machining centers.
- 3.d. Describe various machining operations performed in CNC machining centers.
- 3.e. Identify tools for various machining operations performed in CNC machining centers.
- 3.f. Identify universal basic function EIA programming codes.
- 3.g. Identify the universally common elements of a conversational program.
- 3.h. Describe the difference between online and offline programming.

### 4. Operate controls on CNC machining centers.

### **Assessment Strategies**

- 4.1. In the classroom, lab, or shop setting
- 4.2. Written and applied assignments (score 70% or higher)
- 4.3. Test / Quizzes (score 70% or higher)
- 4.4. Given prints, diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 4.1. you locate and identify the main controls on CNC milling machines in the lab or shop.
- 4.2. you locate and identify CNC control components on CNC milling machines in the machine tool lab or shop.
- 4.3. you sequentially list the steps required to turn on each type of CNC milling machine in the machine tool lab or shop.
- 4.4. you turn on each type of CNC milling machine in the machine tool lab or shop.
- 4.5. you navigate between menus, chapters, and pages on each type of CNC machining center control in the machine tool lab or shop.
- 4.6. you use cursors and control buttons on CNC control monitors in the machine tool lab or shop.
- 4.7. you use manual jog controls on each type of CNC milling machine in the machine tool lab or shop.
- 4.8. you describe the purpose of each machine control button and the emergency stop.
- 4.9. you describe typical information found on each page of the CNC machining center monitor.
- 4.10. you complete MasterTask CNC Mills Module 9 interactive test.
- 4.11. you complete MasterTask CNC Mills Module 10 interactive test.
- 4.12. you complete MasterTask CNC Mills Module 27 interactive test.

- 4.a. Identify main controls on various CNC machining centers.
- 4.b. Identify the basic CNC control components on various machines.
- 4.c. Explain the function of each of the components on a CNC machining center control.
- 4.d. List the steps required to turn on CNC machining centers.

- 4.e. Demonstrate the procedure to turn on and home CNC machines.
- 4.f. Identify mode selection controls.
- 4.g. Describe the function of each of the modes.
- 4.h. Discuss typical variations found on different brands and types of CNC machining centers.
- 4.i. Demonstrate the navigation of menus, chapters, and pages on CNC control monitors.
- 4.j. Demonstrate the navigation between position, program, and offset pages on CNC control monitors.
- 4.k. Describe the information found on each page of the CNC control monitor.
- 4.I. Demonstrate the use of cursors and control buttons on CNC control monitors.
- 4.m. Explain the use of the Emergency Stop button on CNC machining centers.
- 4.n. Describe the variations between Handle Jog controls on various machines.
- 4.o. Demonstrate the use of Handle Jog controls on various machines.

### 5. Call up programs on CNC machining centers.

### **Assessment Strategies**

- 5.1. In the classroom, lab, or shop setting
- 5.2. Written and applied assignments (score 70% or higher)
- 5.3. Test / Quizzes (score 70% or higher)
- 5.4. Given prints, diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 5.1. you sequentially list the steps for calling up programs on various types of CNC milling machines.
- 5.2. you identify the buttons and modes for calling up programs on various CNC milling machines in the machine tool lab or shop.
- 5.3. you sequentially list the steps required for showing graphical plotting of programs.
- 5.4. you call up programs in conversational control CNC milling machines.
- 5.5. you call up programs in EIA/ISO controlled CNC machining centers.
- 5.6. you verify programs in the graphical interface of conversational controlled CNC milling machines.
- 5.7. you verify programs in EIA/ISO controlled CNC machining centers.
- 5.8. you complete MasterTask CNC Mills Module 76 interactive test.

### Learning Objectives

- 5.a. List the steps for calling up programs on various CNC machining centers.
- 5.b. Identify the buttons on the CNC machine control for calling up programs.
- 5.c. Demonstrate the procedure for calling up programs on CNC machining centers.
- 5.d. Call up programs on conversational and EIA controlled CNC machining centers.
- 5.e. Verify programs in graphical interface.

### 6. Perform scheduled machine maintenance.

### **Assessment Strategies**

- 6.1. In the classroom, lab, or shop setting
- 6.2. Written and applied assignments (score 70% or higher)
- 6.3. Tests / Quizzes (score 70% or higher)
- 6.4. Given diagrams, logs, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 6.1. you locate coolant tanks on all CNC milling machines in the machine tool lab or shop.
- 6.2. you state the correct mixture and concentration for coolant tank fluid.
- 6.3. you identify situations when the coolant tank needs to be filled.
- 6.4. you fill the coolant tank.
- 6.5. you locate and identify oil system components on all CNC milling machines in the machine tool lab or shop.
- 6.6. you demonstrate the process for fluid level maintenance after machine warm up.
- 6.7. you maintain a maintenance log.
- 6.8. you complete MasterTask CNC Mills Module 27 interactive test.

- 6.a. Identify coolant tank locations.
- 6.b. List the components of CNC machining center coolant systems.

- 6.c. Describe how coolant and chips are removed from the machining area of a CNC machining center.
- 6.d. Describe procedures for coolant tank inspection.
- 6.e. Describe the process for filling coolant tanks.
- 6.f. Describe the components of the hydraulic system.
- 6.g. Describe the procedures for inspecting hydraulic systems.
- 6.h. Describe the lubrication system components and maintenance procedures.
- 6.i. Describe the process for maintaining fluid levels after machine warm up.
- 6.j. Discuss the use of lock-out procedures during maintenance.
- 6.k. Explain the procedures for checking and correcting system deficiencies.
- 6.I. Explain the function of automatic maintenance check systems.
- 6.m. Perform system checks and maintenance.

### 7. Set up tools in CNC machining centers.

### **Assessment Strategies**

- 7.1. In the classroom, lab, or shop setting
- 7.2. Written and applied assignments (score 70% or higher)
- 7.3. Tests / Quizzes (score 70% or higher)
- 7.4. Given prints, specification sheets, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 7.1. you use safe operating procedures when setting up and changing tools on CNC milling machines.
- 7.2. you identify and select tools for CNC milling machines from tool list specifications.
- 7.3. you use CNC machining center controls to rotate carousel.
- 7.4. you control the direction of carousel rotation.
- 7.5. you change tools in CNC milling machines with manual tool changers.
- 7.6. you change and load tools in CNC machining centers with automatic tool changers.
- 7.7. you complete MasterTask CNC Mills Module 7 interactive test.
- 7.8. you complete MasterTask CNC Mills Module 8 interactive test.
- 7.9. you complete MasterTask CNC Mills Module 40 interactive test.
- 7.10. you complete MasterTask CNC Mills Module 47 interactive test.
- 7.11. you complete MasterTask CNC Mills Module 48 interactive test.

### **Learning Objectives**

- 7.a. Identify the various types of cutters, tools and tool holders for CNC machining centers.
- 7.b. Select tools and holders for CNC machining centers.
- 7.c. Demonstrate the procedure for changing tools in CNC machining centers without tool carousels.
- 7.d. Identify control buttons to move or index the tool carousel.
- 7.e. Describe the safe location for changing tools.
- 7.f. Demonstrate rotating the carousel to index tool positions
- 7.g. Demonstrate the procedure for changing tools in CNC machining centers.
- 7.h. Interpret a tool drawing to determine axis direction relative to spindle centerline.
- 7.i. Demonstrate the procedures for establishing and setting tool length offsets.

### 8. Set up work in CNC machining centers.

### **Assessment Strategies**

- 8.1. In the classroom, lab, or shop setting
- 8.2. Written and applied assignments (score 70% or higher)
- 8.3. Tests / Quizzes (score 70% or higher)
- 8.4. Given prints, stock, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 8.1. you start up and home CNC milling machines in the machine tool lab or shop.
- 8.2. you recognize overtravel alarms within time period specified and participate in discussion to solve the problem.
- 8.3. you apply safety procedures 100% of the time while setting up work in CNC milling machines.
- 8.4. you set up and secure work in conversationally controlled CNC milling machines.
- 8.5. you set up and secure work in automatic CNC machining centers.

- 8.6. you use stock stops for production machining.
- 8.7. you set up work in fixtures.
- 8.8. you complete MasterTask CNC Mills Module 11 interactive test.
- 8.9. you complete MasterTask CNC Mills Module 51 interactive test.

### **Learning Objectives**

- 8.a. Describe the procedures for homing various CNC machining centers.
- 8.b. Demonstrate the procedures for homing various CNC machining centers.
- 8.c. Describe the conditions that cause an overtravel alarm.
- 8.d. Demonstrate the process of securing work in CNC machining centers.
- 8.e. Demonstrate the procedures for using stock stops for production machining.
- 8.f. Demonstrate the procedures for establishing and setting work coordinates.

### 9. Run programs in CNC machining centers.

### **Assessment Strategies**

- 9.1. In the classroom, lab, or shop setting
- 9.2. Written and applied assignments (score 70% or higher)
- 9.3. Tests / Quizzes (score 70% or higher)
- 9.4. Given prints, diagrams, stock, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 9.1. you apply safety procedures 100% of the time while running CNC milling machines.
- 9.2. you create an accurate checklist for the steps required to setup and perform a production run in CNC milling machines.
- 9.3. you call up programs in each type of CNC milling machine in the machine tool lab or shop.
- 9.4. you follow standard procedures for setting up work and tools in the CNC milling machines.
- 9.5. you locate offset screens in each type of CNC milling machine in the machine tool lab or shop.
- 9.6. you set tool to Z top of part.
- 9.7. you set tool X and Y locations for parts.
- 9.8. you locate button on machine control to run programs.
- 9.9. you start and run programs.
- 9.10. you check and remove parts from the CNC milling machines after program has run.
- 9.11. you follow production steps to continue a production part run
- 9.12. you complete MasterTask CNC Mills Module 77 interactive test.

### Learning Objectives

- 9.a. Practice safe operating procedures for running CNC machining centers.
- 9.b. List the procedures for setting up and performing a production run on CNC machining centers.
- 9.c. Call up programs that will be run in CNC machining centers.
- 9.d. Follow procedures for securing work in CNC machining centers.
- 9.e. Demonstrate how to locate offset screens using various machine controls.
- 9.f. Set tool length and diameter offsets.
- 9.g. Set work coordinate offsets.
- 9.h. Explain the importance of using coolant in cutting operations on the CNC machining center.
- 9.i. Run programs in various CNC machining centers.
- 9.j. Perform production steps required after first part is run.

### 10. Perform quality inspections on CNC milled parts.

### **Assessment Strategies**

- 10.1. In the classroom, lab, or shop setting
- 10.2. Written and applied assignments (score 70% or higher)
- 10.3. Tests / Quizzes (score 70% or higher)
- 10.4. Given prints, diagrams, pictures, inspection sheets, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 10.1. you apply safety procedures 100% of the time while inspecting parts in CNC milling machines.
- 10.2. you identify part dimensions to measure and inspect based on specifications on documents.

- 10.3. you identify part finishes to inspect based on specifications on documents.
- 10.4. you identify the frequency with which to inspect parts.
- 10.5. you perform inspections on parts.
- 10.6. you follow directions for inspection frequency.
- 10.7. you record inspection results on documentation sheets.
- 10.8. you identify problems with part quality.
- 10.9. you follow the correct procedures for reporting part quality problems.
- 10.10. you complete MasterTask CNC Mills Module 37 interactive test.

### **Learning Objectives**

- 10.a. Analyze part prints or specification to determine part dimensions to inspect.
- 10.b. Demonstrate safe procedures for inspecting parts while still in the CNC machining centers.
- 10.c. Perform inspections on parts after machining per specified frequency.
- 10.d. Explain the concepts of locational, roughness, and size tolerances.
- 10.e. Identify quality defects in machined parts.
- 10.f. Record inspection results.
- 10.g. Explain the procedure for reporting problems with part quality.

### 11. Recognize problems related to CNC machine operation.

### **Assessment Strategies**

- 11.1. In the classroom, lab, or shop setting
- 11.2. Written and applied assignments (score 70% or higher)
- 11.3. Tests / Quizzes (score 70% or higher)
- 11.4. Given diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 11.1. you apply safety procedures 100% of the time while running CNC milling machines.
- 11.2. you list the processes required for efficiently finding and eliminating quality problems.
- 11.3. you follow flow chart to isolate potential problem sources.
- 11.4. you identify problems with part quality.
- 11.5. you identify problems with part quality as a result of chatter.
- 11.6. you identify machine vibration sounds.
- 11.7. you use of override controls to reduce or correct vibration problems.
- 11.8. you identify finish problems associated with tool wear, tool failure, or workholding problems.
- 11.9. you list potential causes of broken cutter inserts and suggests preventative actions.
- 11.10. you participate in discussion of operator responsibilities.
- 11.11. you follow specified procedures for reporting problems during machining.
- 11.12. you complete MasterTask CNC Mills Module 38 interactive test.
- 11.13. you complete MasterTask CNC Mills Module 39 interactive test.

### **Learning Objectives**

- 11.a. Define the machine operator's role in identifying quality defects.
- 11.b. Identify chatter sounds between the workpiece and tool.
- 11.c. Identify the condition that chatter creates on the workpiece surface.
- 11.d. Follow a logical path through likely problem sources to isolate areas to investigate.
- 11.e. Describe potential problem sources related to quality problems.
- 11.f. Describe the steps required to correct problems by making an adjustment and resuming production.
- 11.g. Explain common causes of chatter.
- 11.h. Explain ways to correct vibration using overrides.
- 11.i. Associate chatter sources with part or tool conditions.
- 11.j. Identify causes of finish problems other than from vibration.
- 11.k. Explain the relationship between tool war and rough or finish operations.
- 11.I. Describe the operator's responsibility after discovering machining problems.

### 12. Change CNC machining center tools and inserts.

### **Assessment Strategies**

- 12.1. In the classroom, lab, or shop setting
- 12.2. Written and applied assignments (score 70% or higher)
- 12.3. Tests / Quizzes (score 70% or higher)

### 12.4. Given diagrams, materials, and all available shop equipment and supplies

### Criteria

### You will know you are successful when

- 12.1. you identify inserts that are damaged or worn and need to be changed.
- 12.2. you identify cutting tools that are damaged or worn and must be replaced.
- 12.3. you select the correct insert shape and style for replacement.
- 12.4. you change inserts.
- 12.5. you select the correct cutting tool for replacement.
- 12.6. you change cutting tools.
- 12.7. you complete documentation stating the insert or tool that was changed and the likely cause of the damage.
- 12.8. you adjust offsets in the CNC milling machine control.
- 12.9. you notify specified supervisor or setup person after changing inserts or tools.
- 12.10. you complete MasterTask CNC Mills Module 41 interactive test.

- 12.a. Explain the procedure for changing tools and inserts in the CNC machining centers.
- 12.b. Perform inspections of tooling and inserts.
- 12.c. Identify the effect of damaged or worn inserts on workpiece finish.
- 12.d. Identify damaged or worn inserts.
- 12.e. Explain the most likely causes of insert failure.
- 12.f. Demonstrate the process of changing inserts.
- 12.g. Adjust offsets as needed.
- 12.h. Explain operator responsibility after changing inserts.