

Western Technical College

10660124 Electronic Component Applications

Course Outcome Summary

Course Information

Description	Solid state theory and troubleshooting is applied through the construction of a power supply project.
Career Cluster	Manufacturing
Instructional Level	Associate Degree Courses
Total Credits	2.00
Total Hours	60.00

Types of Instruction

Instruction Type	Credits/Hours
Lecture	0.67 CR / 12 HR
Lab	1.33 CR / 48 HR

Course History

Last 1/11/2016 Approval Date

Pre/Corequisites

Pre/Corequis 10660105 Soldering Fundamentals ite

Textbooks

Electricity Basic and Intro to Industrial Controls (Custom Book). Petruzella, Frank. Publisher: McGraw-Hill Publishing Company. **ISBN-13**: 978-1-3081-1020-2. Required.

Learner Supplies

Safety glasses with side eye protection that meet Z87 OSHA guidelines. Vendor: Campus Shop. Required.

Scientific calculator - T1-30XIIS. Vendor: Campus Shop. Required.

Core Abilities

- 1. Apply mathematical concepts. Status Active
- 2. Demonstrate ability to think critically. Status Active
- 3. Demonstrate ability to value self and work ethically with others in a diverse population. *Status* Active
- 4. Transfer social and natural science theories into practical applications. *Status* Active
- 5. Use effective communication skills. Status Active
- 6. Use technology effectively. Status Active

Program Outcomes

1.	Adhere to proper safety practices and procedures.							
	Туре	Local	Code		Status	Active		
2.	2. Exhibit professionalism.							
2.	Туре	Local	Code		Status	Active		
3.	Perform	n preventative	maintena	nce.				
	Туре	Local	Code		Status	Active		
4.	Maintai	n parts and ec	uipment i	nventory includ	ling servi	ce documentation.		
	Туре	Local	Code		Status	Active		
5.	Maintai	n electrical an	delectron	ic devices and	evetome			
0.	Туре	Local	Code		Status	Active		
	Build or assemble electrical, electronic and mechanical hardware under the guidance of a journeyman electrician or electromechanical technician.							
6.								
6.								
6.	journey	man electricia	an or elect	romechanical t	echnician			
-	journey <i>Typ</i> e	man electricia	an or elect	romechanical t	echnician			
-	journey <i>Type</i> se Comp	rman electricia Local etencies	an or elect <i>Cod</i> e	romechanical t	echnician Status			
Cours	journey <i>Type</i> se Comp	rman electricia Local etencies s the two type	an or elect <i>Cod</i> e	romechanical t 	echnician Status			
Cours	journey _{Type} se Comp Discuse <i>Domain</i>	rman electricia Local etencies s the two type	an or elect Code s of semic Level	romechanical to conductor mate Understandin	echnician <i>Status</i> rial.	Active		
Cours	journey _{Type} se Comp Discuss Domain Assessr	rman electricia Local etencies s the two type Cognitive	an or elect Code s of semic Level	romechanical to conductor mate Understandin	echnician <i>Status</i> rial.	Active		
Cours	journey _{Type} se Comp Discuss Domain Assessr	rman electricia Local etencies s the two type Cognitive nent Strategies	an or elect Code s of semic Level	romechanical to conductor mate Understandin	echnician <i>Status</i> rial.	Active		

- 1.1. you can explain the difference between P and N type semiconductor material.
- 1.2. you can draw the schematic symbol of a diode listing the Anode and Cathode connection.
- 1.3. you can describe current flow through a diode that is forward biased and reverse biased.

Learning Objectives

- 1.a. Discuss the basic structure of atoms.
- 1.b. Discuss valence electrons and how they determine if a material is a conductor, insulator or semiconductor.
- 1.c. Describe how doping is used to make P and N type semiconductors.

Analyze diode construction and operation.

Domain Cognitive Level Analyzing Status

Assessment Strategies

- 2.1. Written Objective Test
- 2.2. Skill Demonstration

Criteria

2.

3.

Performance will meet expectations when:

- 2.1. you can draw the current/voltage curve of a diode based on lab measurements.
- 2.2. you can describe the three diode approximations and when to use each.
- 2.3. you can predict the current flow through a diode based on the physical installation in a circuit.
- 2.4. you can demonstrate how the application of heat to a semiconductor alters its operational characteristics.

Active

Learning Objectives

- 2.a. Construct a basic circuit to test diode operation when forward and reverse biased.
- 2.b. Determine which diode approximation to used based on circuit operational conditions.
- 2.c. Test a diode with a DMM to determine if it is defective.
- 2.d. Measure the voltage drop across a diode and determine if it is forward or reverse biased.

Analyze diode circuit operation with DC and AC voltages.

				•	
Domain	Cognitive	Level	Analyzing	Status	Active

Assessment Strategies

- 3.1. Written Objective Test
- 3.2. Skill Demonstration

Criteria

You will know you are successful when:

- 3.1. you can calculate the voltages from a full wave and half wave rectifier circuits.
- 3.2. you can graph the voltage curve for both a half wave and full wave rectifier circuit.
- 3.3. you can explain the advantages and disadvantages of the different type of rectifier circuits.

Learning Objectives

- 3.a. Construct a half wave and full wave rectifier circuit.
- 3.b. Determine the operating frequency of either a half wave or a full wave rectifier circuit.
- 3.c. Calculate the output voltage from a rectifier circuit based on the schematic drawing of the circuit.
- 3.d. Measure the peak output voltage of a rectifier circuit using an oscilloscope.
- 3.e. Measure the operating frequency of a rectifier circuit using an oscilloscope.

4. Troubleshoot diodes in rectifier circuits.

Domain	Cognitive	Level	Analyzing	Status	Active
--------	-----------	-------	-----------	--------	--------

Assessment Strategies

- 4.1. Written Objective Test
- 4.2. Skill Demonstration

Criteria

You will know you are successful when:

- 4.1. you can determine which component in a rectifier circuit is defective.
- 4.2. you can determine what affect a changing load will have on a rectifier circuit.
- 4.3. you can determine how much current can be supplied by a rectifier without damaging any components.

Learning Objectives

- 4.a. Isolate the problem component in a rectifier circuit based on measurements.
- 4.b. Measure the effects of a changing load on a rectifier circuit.

4.c. Calculate the effects of a changing load resistance on a rectifier circuit.

Explore the operation of a diode in a clipper circuit.

Domain Cognitive Level Applying Status Active

Assessment Strategies

- 5.1. Written Objective Test
- 5.2. Skill Demonstration

Criteria

5.

6.

You will know you are successful when:

- 5.1. you can predict the voltages of a positive or negative diode clipper circuit.
- 5.2. you can predict and graph the voltage waveform of a diode clipper circuit.
- 5.3. you can construct a diode clipper circuit.

Learning Objectives

- 5.a. Construct a diode clipper circuit.
- 5.b. Measure the output voltage from a diode clipper circuit.
- 5.c. Determine if a diode clipper circuit is a positive or negative circuit based on the schematic diagram.

Test the operation of zener diodes and apply them as a voltage regulator.

Domain Cognitive Level Analyzing Status Active

Assessment Strategies

- 6.1. Written Objective Test
- 6.2. Skill Demonstration

Criteria

Performance will meet expectations when:

- 6.1. you can construct a circuit to demonstrate the operation of a zener diode as a voltage regulator.
- 6.2. you can demonstrate how to measure the zener voltage drop when forward and reverse biased.
- 6.3. you can graph the operating curve of a zener diode.
- 6.4. you can calculate the load resistance range that will allow a zener to operate within its specifications.

Learning Objectives

- 6.a. Explain the operating characteristics of a zener diode and how it differs from a regular diode.
- 6.b. Construct a zener voltage regulator circuit.
- 6.c. Measure the output voltage of a zener regulated power supply with a varying load resistance.
- 6.d. Determine the operating range of the load for a zener regulated power supply.
- 6.e. Calculate currents in a zener regulated supply with varying load resistances.
- 6.f. Calculate power dissipation of a zener diode in a voltage regulator circuit.

7. Determine the operational characteristics of a light emitting diode (LED)

Domain Cognitive Level Evaluating Status Active

Assessment Strategies

- 7.1. Written Objective Test
- 7.2. Skill Demonstration

Criteria

You will know you are successful when:

- 7.1. you can describe the operation of a light emitting diode.
- 7.2. you can construct a circuit to test the operation of a light emitting diode.
- 7.3. you can describe the operation of a opto-isolator.

Learning Objectives

- 7.a. Describe the operation of a light emitting diode.
- 7.b. Construct a circuit to demonstrate the operation of a light emitting diode.
- 7.c. Assemble a circuit using an opto-isolator to demonstrate optical isolation.

8. Construct a linear power supply.

Assessment Strategies

8.1. Skill Demonstration

Criteria

- 8.1. you can construct a linear power supply.
- 8.2. you can test the operation of a linear power supply.

Learning Objectives

- 8.a. Solder the components of a linear power supply to a printed circuit board.
- 8.b. Wire the circuit board and related components to complete a linear power supply.
- 8.c. Test the operation of a linear power supply.

9. Explore the operation of a bipolar junction transistor (BJT).

Domain Cognitive Level Applying Status Active

Assessment Strategies

- 9.1. Skill Demonstration
- 9.2. Written Objective Test

Criteria

You will know you are successful when:

- 9.1. you can the construction of a NPN and PNP transistor.
- 9.2. you can draw the schematic symbols for either a NPN or PNP transistor.
- 9.3. you can test a transistor to determine the collector, base and emitter leads.
- 9.4. you can calculate the beta of a transistor.
- 9.5. you can measure any of the three currents in a transistor.

Learning Objectives

- 9.a. Describe the construction of a bipolar junction transistor.
- 9.b. Demonstrate the proper circuit construction to bias it properly.
- 9.c. Demonstrate how a transistor is used as a current amplifier.
- 9.d. Demonstrate how heat changes the operational characteristics of a transistor.
- 9.e. Explain how a transistor can be used as a amplifier or a switch.

10. Design and test transistor bias circuits.

Domain	Cognitive	Level	Creating	Status	Active
--------	-----------	-------	----------	--------	--------

Assessment Strategies

- 10.1. Skill Demonstration
- 10.2. Written Objective Test

Criteria

You will know you are successful when:

- 10.1. you can calculate the DC voltages and currents in a variety different transistor bias circuits.
- 10.2. you can measure the voltages and currents in a variety of transistor bias circuits.
- 10.3. you can determine from the collector to emitter voltage if a transistor is in the active, cutoff or saturation mode of operation.

Learning Objectives

- 10.a. Analyze the different transistor bias circuits.
- 10.b. Describe how a transistor can be used when operating in saturation mode.
- 10.c. Explain the differences in the three operating modes of a transistor.
- 10.d. Analyze a voltage divider bias circuit.
- 10.e. Discuss the effects of beta a various transistor bias circuits.
- 10.f. Examine the effects of heat on a transistors beta.