

Western Technical College

10605174 Biomedical Science Applications

Course Outcome Summary

Course Information

Description This course focuses on core biomedical skills, background information, and critical

thinking through the Biomedical applications of various sciences. A basic introduction to the concepts/applications of the following topics is included: math tools, optics, magnetism, wave/particle theory, atomic and radiation physics, general chemistry, molecular interactions, reactions, bonding, hydraulics, pneumatics and robotics.

Career Cluster Science, Technology, Engineering and Mathematics

Instructional

Level

Associate Degree Courses

Total Credits 3
Total Hours 72

Pre/Corequisites

Prerequisite 10806154 General Physics 1

Textbooks

No textbook required.

Learner Supplies

Safety Glasses with side eye protection, ANSI Z87.1, Pyramex Venture II or Pyramex OTS. **Vendor:** Campus Shop. Required.

Success Abilities

1. Refine Professionalism: Improve Critical Thinking

Program Outcomes

- 1. Identify the function and operation of various types of imaging equipment
- 2. Problem-solve electronic circuits and systems
- 3. Demonstrate safety precautions and practices with medical equipment
- Demonstrate professionalism

Course Competencies

1. Examine properties of electromagnetic waves.

Assessment Strategies

- 1.1. Experiment
- 1.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 1.1. you identify the waves in the electromagnetic spectrum by wavelength and/or frequency
- 1.2. you identify a spectrum as continuum or bright-line

Learning Objectives

- 1.a. Review concepts of wave motion
- 1.b. Review wave properties
- 1.c. Describe the types of waves in the electromagnetic spectrum
- 1.d. Differentiate between continuum and bright-line spectra

2. Explore the concepts of quantum physics.

Assessment Strategies

- 2.1. Experiment
- 2.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 2.1. you apply the Bohr model of the atom to describe the spectrum of a hydrogen atom
- 2.2. you successfully complete a laboratory experiment involving photon energy as a function of frequency and wavelength

Learning Objectives

- 2.a. Investigate the concept of quantization of energy
- 2.b. Examine the characteristics of photons
- 2.c. Calculate photon energy using the Bohr model of the atom
- 2.d. Calculate the wavelength shift due to the Compton effect

3. Relate the properties of atomic physics to physical phenomena.

Assessment Strategies

- 3.1. Experiment
- 3.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 3.1. you calculate the wavelength of an energetic electron
- 3.2. you create correct electron configurations for elements in the first five rows of the periodic table

Learning Objectives

- 3.a. Interpret the wave nature of particles (de Broglie wavelength)
- 3.b. Use quantum numbers to characterize the properties of the electrons in an atom
- 3.c. Produce electron configuration of atoms
- 3.d. Interpret the organization of elements in the periodic table according to quantum numbers and electron

configurations

4. Investigate the ramifications and applications of nuclear physics.

Assessment Strategies

- 4.1. Experiment
- 4.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 4.1. you use nuclear notation to identify various elements
- 4.2. you convert between the decay rate and the half-life of a radioactive nuclide
- 4.3. you compute the effective dose corresponding to a complex radiation exposure scenario
- 4.4. you successfully complete a laboratory experiment investigating the differences between alpha, beta, and gamma radiation
- 4.5. you successfully complete a laboratory experiment involving nuclear activity as a function of distance from the radioactive source
- 4.6. you successfully complete a laboratory experiment to determine the half-life of a radioactive nuclide

Learning Objectives

- 4.a. Investigate the structure of the nucleus of an atom
- 4.b. Use nuclear notation to describe nuclei of different atoms
- 4.c. Write balanced radioactive decay reactions
- 4.d. Examine the decay rate, half-life, and exponential decay of radioactive nuclides
- 4.e. Compute effective dose of absorbed radiation energy
- 4.f. Investigate medical applications of radiation and radiation detection devices

5. Investigate optical phenomena.

Assessment Strategies

- 5.1. Experiment
- 5.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 5.1. you complete ray-tracing diagrams for mirrors and lenses
- 5.2. you complete exercises using the mirror and thin-lens equations
- 5.3. you apply Snell's law to calculate angles of incidence or refraction
- 5.4. you calculate the critical angle for total internal reflection
- 5.5. vou calculate the polarization angle
- 5.6. you successfully complete a laboratory experiment involving mirrors and lenses

Learning Objectives

- 5.a. Characterize light rays and wave fronts
- 5.b. Investigate the reflection of light using the law of reflection, ray tracing diagrams, and the mirror equation for plane and spherical mirrors
- 5.c. Investigate the refraction of light using Snell's law, ray tracing diagrams for thin lenses, and the thin lens equation
- 5.d. Examine total internal reflection and its application to fiber optics
- 5.e. Investigate the interference and diffraction of light
- 5.f. Describe the polarization of light

6. Explore the fundamental aspects of chemistry.

Assessment Strategies

- 6.1. Experiment
- 6.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 6.1. you balance chemical equations
- 6.2. you determine compounds resulting from ionic and covalent bonding

- 6.3. you perform calculations to determine amounts of reactants and products using balance chemical equations
- 6.4. you successfully complete a laboratory experiment investigating lemon batteries

Learning Objectives

- 6.a. Review chemical notation, the definitions of elements and compounds, and the structure of the periodic table of the elements
- 6.b. Illustrate chemical reactions using balanced chemical equations
- 6.c. Predict chemical compounds produced by ionic and covalent bonding
- 6.d. Express the basic concepts of organic chemistry
- 6.e. Determine the reactants and products of acid-base reactions
- 6.f. Determine the reactants and products in oxidation-reduction reactions

7. Investigate hydraulic principles and components.

Assessment Strategies

- 7.1. Experiment
- 7.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 7.1. you calculate the forces in a hydraulic jack
- 7.2. you correctly identify hydraulic component symbols
- 7.3. you complete laboratory activities involving models of hydraulic machines

Learning Objectives

- 7.a. Review the application of Pascal's principle to fluid systems and specifically the hydraulic press
- 7.b. Identify symbols that represent hydraulic components
- 7.c. Examine hydraulic circuits
- 7.d. Explore the characteristics of hydraulic systems and their applications in industries including biomedical technology

8. Investigate pneumatic principles and components.

Assessment Strategies

- 8.1. Experiment
- 8.2. Written Objective Test score 50% or higher

Criteria

You will know you are successful when

- 8.1. you use the ideal gas law to solve problems involving gases
- 8.2. you correctly identify pneumatic component symbols
- 8.3. you complete laboratory activities involving models of pneumatic machines

Learning Objectives

- 8.a. Review the application of the ideal gas law to closed gas systems
- 8.b. Identify symbols that represent pneumatic components
- 8.c. Examine pneumatic circuits
- 8.d. Explore the characteristics of pneumatic systems and their applications in industries including biomedical technology

9. Explore principles and applications of the major types of motors.

Assessment Strategies

- 9.1. Written Objective Test score 50% or higher
- 9.2. Experiment

Criteria

You will know you are successful when

- 9.1. you identify the uses for common types of DC and AC motors
- 9.2. you identify the uses for stepper and servo motors
- 9.3. you complete laboratory activities involving motors

Learning Objectives

- 9.a. Explore the fundamental principles of motor operation
- 9.b. Investigate the construction and function of DC and AC motors
- 9.c. Describe the most common types of DC motors and their applications
- 9.d. Describe the most common types of AC motors and their applications
- 9.e. Describe the most common types of stepper motors and their applications
- 9.f. Describe servo motors and their applications