

# **Western Technical College**

# 10601140 HVACR Commercial Systems

# **Course Outcome Summary**

#### Course Information

**Description** This course studies the design, application, operation, and maintenance of large

commercial air conditioning, refrigeration, and air handling systems. Coursework includes lab studies as well as field study trips to commercial installations. HVACR is a common reference to Heating, Ventilation, Air Conditioning and Refrigeration.

Career

Cluster

Architecture and Construction

Instructional

Level

**Associate Degree Courses** 

Total Credits 3
Total Hours 72

### **Pre/Corequisites**

Prerequisite 10601101 HVACR Refrigeration

### **Textbooks**

Refrigeration and Air Conditioning Technology. 9th Edition. Copyright 2021. Whitman, Bill, Bill Johnson, John Timczyk, and Eugene Silberstein. Publisher: Cengage Learning. ISBN-13:978-0-357-12227-3. Required.

### **Learner Supplies**

Safety glasses with side eye protection that meet Z87 OSHA guidelines. Vendor: Campus Shop. Required.

### **Program Outcomes**

- 1. Evaluate HVACR system designs
- 2. Analyze HVACR systems

# **Course Competencies**

### 1. Evaluate air handling systems

#### Criteria

You will know you are successful when

1.1. diagrams of air handling systems are complete with 80% accuracy

#### **Learning Objectives**

- 1.a. Diagram a single-zone air handling system
- 1.b. Diagram a multi-zone air handling system
- 1.c. Diagram a reheat air handling system
- 1.d. Diagram a dual-duct air handling system
- 1.e. Diagram an induction air handling system
- 1.f. Diagram a VAV air handling system
- 1.g. List the typical applications for single-zone air handling systems
- 1.h. List the typical applications for multi-zone air handling systems
- 1.i. List the typical applications for reheat air handling systems
- 1.j. List the typical applications for dual-duct air handling systems
- 1.k. List the typical applications for induction air handling systems
- 1.I. List the typical applications for VAV air handling systems
- 1.m. Analyze the use of displacement ventilation systems

## 2. Summarize the process of how heat is transferred from a zone to the outdoors

#### Criteria

You will know you are successful when

2.1. sketch is complete with 80% accuracy

#### **Learning Objectives**

- 2.a. Sketch an all water cooling system
- 2.b. Compose a paragraph describing how heat is moved from an occupied zone to the outdoors

### 3. Summarize the operation of centrifugal chillers

#### Criteria

You will know you are successful when

- 3.1. you disassemble and reassemble the compressor in the proper sequence
- 3.2. sketch is complete with 80% accuracy
- 3.3. you follow the start-up checklist

#### **Learning Objectives**

- 3.a. Describe the operating principle of centrifugal chillers
- 3.b. Disassemble a gear-drive centrifugal compressor
- 3.c. Diagram a three-stage centrifugal chiller
- 3.d. Start a ten-ton chiller

# 4. Summarize the operation of rotary screw chillers

#### **Learning Objectives**

- 4.a. Describe the operating principle of rotary screw chillers
- 4.b. Describe the three oil circuits used in rotary screw chillers

#### 5. Summarize the operation of absorption chillers

#### Criteria

You will know you are successful when

5.1. tasksheet is complete with 80% accuracy

# **Learning Objectives**

- 5.a. Identify the major components of an absorber
- 5.b. Discuss the operating principles of absorbers

### 6. Summarize the operation of cooling towers

#### Criteria

You will know you are successful when

6.1. tasksheet is complete with 80% accuracy

### **Learning Objectives**

- 6.a. Describe the operating principle of cooling towers
- 6.b. Calculate the range of a cooling tower
- 6.c. Calculate the approach of a cooling tower
- 6.d. Discuss the need for proper water treatment
- 6.e. Point out three areas where water is lost

### 7. Value the benefits of thermal storage

#### **Learning Objectives**

- 7.a. Summarize a typical electric tariff sheet
- 7.b. Differentiate between demand charges and electrical charges
- 7.c. Describe when on-peak hours occur
- 7.d. Differentiate between ice storage and chilled-water storage
- 7.e. Explain how to shift a building's electrical load by using thermal storage
- 7.f. Discuss typical applications of thermal storage

### 8. Value the benefits of energy recovery

### **Learning Objectives**

- 8.a. Research a method of energy recovery
- 8.b. Give an oral presentation on a selected energy recovery topic

### 9. Evaluate the features of ammonia refrigeration

### **Learning Objectives**

- 9.a. Discuss advantages and disadvantages of ammonia refrigeration
- 9.b. Give typical applications of ammonia refrigeration

### 10. Summarize topics related to building construction and construction documentation

#### Criteria

You will know you are successful when

10.1. presentation meets guidelines of presentation grading rubric

### **Learning Objectives**

- 10.a. Review a topic related to building construction
- 10.b. Summarize the information gathered

### 11. Interpret construction documents

### Criteria

You will know you are successful when

11.1. tasksheets are complete with 80% accuracy

#### **Learning Objectives**

- 11.a. Explain what construction documents are
- 11.b. Identify the major categories of construction documents
- 11.c. Outline information from each major category that affects the HVAC designer

### 12. Evaluate construction documents

#### Criteria

You will know you are successful when

12.1. tasksheets are complete with 80% accuracy

### **Learning Objectives**

- 12.a. Locate specific items of information
- 12.b. Determine building construction
- 12.c. Determine HVAC system configuration
- 12.d. Compare design strategies

# 13. Develop coordination items

# **Learning Objectives**

- 13.a. List the various trades involved in a project
- 13.b. Discuss why coordination between the various trades is necessary
- 13.c. Identify typical coordination items for each major trade
- 13.d. Develop coordination documents