

# Western Technical College 10513170 Introduction to Molecular Diagnostics Course Outcome Summary

# **Course Information**

| Description            | Introduces the principles and application of molecular diagnostics in the clinical laboratory. |
|------------------------|------------------------------------------------------------------------------------------------|
| Career<br>Cluster      | Health Science                                                                                 |
| Instructional<br>Level | Associate Degree Courses                                                                       |
| <b>Total Credits</b>   | 2                                                                                              |
| <b>Total Hours</b>     | 42                                                                                             |

# **Pre/Corequisites**

Prerequisite 10513115 Basic Immunology Concepts

# Textbooks

*Molecular Diagnostics: Fundamentals, Methods and Clinical Applications.* 3rd Edition. Copyright 2019. Buckingham, Lela. Publisher: F.A. Davis Co. **ISBN-13:** 978-0-8036-6829-4. Required.

513-170 Molecular Diagnostics Study Guide and Lab Manual. Western. Publisher: Western. Required.

*10-513-170: Molecular Diagnostics Lab Manual*. Western. Publisher: Western. **ISBN-13:** 979-8-822-79216-6. Required.

# **Learner Supplies**

Safety Splash Goggles, ALLSAFE goggle, ANSI Z87.1, Fisher Scientific 19-181-504 or 19-181-502. Vendor: Campus Shop. Required.

Lab Coat. Vendor: Campus Shop. Required.

Sharpie Permanent Marker. Vendor: Campus Shop. Required.

# **Success Abilities**

- 1. Refine Professionalism: Improve Critical Thinking
- 2. Refine Professionalism: Participate Collaboratively

# **Program Outcomes**

- 1. Practice laboratory safety and regulatory compliance
- 2. Monitor and evaluate quality control in the laboratory
- 3. Apply modern clinical methodologies including problem solving and troubleshooting according to predetermined criteria
- 4. Correlate laboratory results to diagnosis of clinical conditions and/or diseases

# **Course Competencies**

# 1. Summarize foundational concepts of molecular biology

### **Assessment Strategies**

1.1. Oral, Written or Graphic Assessment

Criteria

- 1.1. describe the history of the development of molecular diagnostics
- 1.2. describe eukaryotic and prokaryotic cell structures
- 1.3. explain the structure and function of DNA and RNA
- 1.4. explain semi-conservative DNA replication
- 1.5. explain transcription and translation

#### Learning Objectives

- 1.a. Describe the history of the development of molecular diagnostics.
- 1.b. Describe eukaryotic and prokaryotic cell structures.
- 1.c. Explain the structure and function of DNA and RNA.
- 1.d. Explain semi-conservative DNA replication.
- 1.e. Explain transcription and translation.

### 2. Investigate the structure of human, bacterial, and viral genomes

### Assessment Strategies

2.1. Oral, Written, Graphic and/or Skill Assessment

#### Criteria

- 2.1. compare and contrast viral, bacterial, and human genomes
- 2.2. describe bacterial and human chromosome structures
- 2.3. characterize Mendelian and non-Mendelian genetics
- 2.4. summarize the varying types of mutations and polymorphisms and their roles in disease
- 2.5. explain Epigenetic modifications of human genes

# Learning Objectives

- 2.a. Compare and contrast viral, bacterial, and human genomes.
- 2.b. Describe bacterial and human chromosome structures.
- 2.c. Characterize Mendelian and non-Mendelian genetics.

- 2.d. Summarize the varying types of mutations and polymorphisms and their roles in disease.
- 2.e. Explain Epigenetic modifications of human genes.

# 3. Summarize specimen collection and processing requirements for molecular diagnosis and nucleic acid isolation techniques

# **Assessment Strategies**

3.1. Oral, Written or Graphic Assessment

Criteria

- 3.1. list human samples that can be used for molecular diagnostic testing
- 3.2. describe various methods to collect human samples for molecular diagnostic testing
- 3.3. describe appropriate specimen processing and transportation of samples for molecular diagnostic testing
- 3.4. state the proper storage of human specimens for molecular diagnostic testing
- 3.5. explain preanalytical variables that can impact samples used for molecular diagnostic testing
- 3.6. articulate the purpose of RNA and DNA extraction and isolation
- 3.7. outline the necessary steps involved in DNA and RNA extraction

# Learning Objectives

- 3.a. List human samples that can be used for molecular diagnostic testing
- 3.b. Describe various methods to collect human samples for molecular diagnostic testing
- 3.c. Describe appropriate specimen processing and transportation of samples for molecular diagnostic testing
- 3.d. State the proper storage of human specimens for molecular diagnostic testing
- 3.e. Explain preanalytical variables that can impact samples used for molecular diagnostic testing
- 3.f. Articulate the purpose of RNA and DNA extraction and isolation
- 3.g. Outline the necessary steps involved in DNA and RNA extraction

# 4. Investigate nucleic acid identification and manipulation techniques

### **Assessment Strategies**

4.1. Oral, Written or Graphic Assessment

Criteria

- 4.1. describe the action of nucleic acid modifying enzymes
- 4.2. summarize the principle of nucleic acid electrophoresis
- 4.3. provide examples of different electrophoretic techniques and their use in a molecular diagnostics laboratory
- 4.4. compare and contrast western, northern, and southern blots
- 4.5. explain microarray technology and its use in a molecular diagnostics laboratory
- 4.6. describe Sanger Sequencing and Next Generation Sequencing methods in DNA sequencing

# Learning Objectives

- 4.a. Describe the action of nucleic acid modifying enzymes.
- 4.b. Summarize the principle of nucleic acid electrophoresis.
- 4.c. Provide examples of different electrophoretic techniques and their use in a molecular diagnostics laboratory.
- 4.d. Compare and contrast western, northern, and southern blots.
- 4.e. Explain microarray technology and its use in a molecular diagnostics laboratory.
- 4.f. Describe Sanger Sequencing and Next Generation Sequencing methods in DNA sequencing

# 5. Investigate nucleic acid amplification

### **Assessment Strategies**

5.1. Oral, Written or Graphic Assessment

Criteria

- 5.1. identify assay components required to amplify DNA and RNA targets
- 5.2. describe the phases (denaturing, annealing, and extension) of nucleic acid amplification
- 5.3. describe the logarithmic nature of nucleic acid amplification
- 5.4. evaluate how primer and target sequences affect cycling parameters
- 5.5. compare single target, multiplexed, quantitative, and reverse transcriptase PCR methods
- 5.6. describe the factors that can affect amplification of nucleic acids (storage, handling, purity, Mg+2, etc.)

- 5.7. identify intrinsic components of human samples that may interfere with nucleic acid amplification
- 5.8. describe the sources and impact of contamination and common methods used to eliminate contamination

#### Learning Objectives

- 5.a. Identify assay components required to amplify DNA and RNA targets.
- 5.b. Describe the phases (denaturing, annealing, and extension) of nucleic acid amplification.
- 5.c. Describe the logarithmic nature of nucleic acid amplification.
- 5.d. Evaluate how primer and target sequences affect cycling parameters.
- 5.e. Compare single target, multiplexed, quantitative, and reverse transcriptase PCR methods.
- 5.f. Describe the factors that can affect amplification of nucleic acids (storage, handling, purity, Mg+2, etc.).
- 5.g. Identify intrinsic components of human samples that may interfere with nucleic acid amplification.
- 5.h. Describe the sources and impact of contamination and common methods used to eliminate contamination.

### 6. Investigate techniques used to detect amplified nucleic acids

#### **Assessment Strategies**

6.1. Oral, Written or Graphic Assessment

#### Criteria

- 6.1. identify assay components (e.g., intercalating dyes, probes) required to detect amplified nucleic acids
- 6.2. compare detection of amplified nucleic acids using endpoint and real-time PCR methodologies
- 6.3. explain the use of agarose gel electrophoresis, cycle threshold (Ct), and melting temperature (Tm) in endpoint and real-time PCR product analysis
- 6.4. compare the pros and cons of real-time PCR (closed system) and agarose gel-based end point PCR detection methods
- 6.5. identify the different types of probes (e.g., hydrolysis [TaqMan], FRET, molecular beacons, Plexor) used in real-time PCR methods
- 6.6. describe target amplification techniques
- 6.7. explain a PCR method used to detect a specific DNA sequence
- 6.8. summarize the importance of quality controls

#### Learning Objectives

- 6.a. Identify assay components (e.g., intercalating dyes, probes) required to detect amplified nucleic acids.
- 6.b. Compare detection of amplified nucleic acids using endpoint and real-time PCR methodologies.
- 6.c. Explain the use of agarose gel electrophoresis, cycle threshold (Ct), and melting temperature (Tm) in endpoint and real-time PCR product analysis.
- 6.d. Compare the pros and cons of real-time PCR (closed system) and agarose gel-based end point PCR detection methods.
- 6.e. Identify the different types of probes (e.g., hydrolysis [TaqMan], FRET, molecular beacons, Plexor) used in real-time PCR methods.
- 6.f. Describe target amplification techniques.
- 6.g. Explain a PCR method used to detect a specific DNA sequence.
- 6.h. Summarize the importance of quality controls.

## 7. Explain the utilization of molecular diagnostics in diagnosis of diseases and health conditions

#### **Assessment Strategies**

7.1. Oral, Written or Graphic Assessment

#### Criteria

- 7.1. describe ethical considerations associated with molecular testing
- 7.2. explain the role of molecular diagnostic testing in patient care
- 7.3. provide examples of clinical applications of molecular testing for inherited diseases, genetic links to cancer, infectious diseases, and pharmacogenetics

#### Learning Objectives

- 7.a. Describe ethical considerations associated with molecular testing.
- 7.b. Explain the role of molecular diagnostic testing in patient care.
- 7.c. Provide examples of clinical applications of molecular testing for inherited diseases, genetic links to cancer, infectious diseases, and pharmacogenetics.